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Abstract
A generalized nonlocal effective medium theory is derived based on the transfer-matrix method to
determine the nonlocal effective permittivity and permeability for the symmetric and periodic
metal–dielectric multilayer metamaterials, with respect to both transverse-electric and transverse-
magnetic polarized light at arbitrary angle of incidence. The nonlocal effective permittivity and
permeability tensors are analyzed in detail as functions of the wavelength, the angle of incidence,
and the multilayer period. Our generalized nonlocal effective medium theory in consideration of
both permittivity and permeability can accurately predict the dispersion relation, the transmission
and reflection spectra, and the optical field distributions of symmetric metal–dielectric multilayer
stacks with either subwavelength or wavelength-scale period of the unit cell.

Keywords: metamaterials, dispersion, optical nonlocality, effective medium

(Some figures may appear in colour only in the online journal)

1. Introduction

Recently metal–dielectric multilayer metamaterials have been
widely explored due to their anomalous electromagnetic prop-
erties in optical frequencies. Metal–dielectric multilayer meta-
materials with hyperbolic dispersion have been used to realize
many unique applications [1], such as negative refraction [2–4],
deep subwavelength imaging [5–7], anomalous indefinite cavity
[8], photonic density of states enhancement [9, 10], thermal
emission design [11], and spontaneous emission engineering
[12–14]. By tuning the metallic filling ratio of metal–dielectric
multilayer stacks, epsilon-near-zero (ENZ)metamaterials can be
constructed for the realization of radiation wavefront tailoring
[15], displacement current insulation [16, 17], optical non-
linearity enhancement [18], and invisible cloaking [19, 20]. The
optical properties of metal–dielectric multilayer stacks can be
simply described by the local effective medium theory (EMT),
when the multilayer period is much smaller than the optical
wavelength. In fact, due to the dramatically different

electromagnetic properties of the metal layer and the dielectric
layer, the variation of the electromagnetic field on the scale of
one multilayer period will generate strong spatial dispersion,
which will lead to optical nonlocality [21] not considered in the
local EMT. Recently, in order to take into account the optical
nonlocality in metal–dielectric multilayer stacks, several dif-
ferent nonlocal EMT models have been derived, such as the
dispersion relation approximation [22–24] and the electro-
magnetic field averaging algorithm [25–27]. However, these
models only consider the nonlocal effective permittivity as
functions of frequency and wave vector, but assume unity
permeability. Therefore, the optical properties of metal–di-
electric multilayer stacks cannot be completely predicted by
these models, especially when the multilayer period is far away
from the deep-subwavelength scale.

According to Herpin’s theorem, any dielectric multilayer
stack is equivalent to a two-film combination [28], while a
symmetric dielectric multilayer stack is equivalent to a single
film with an effective refractive index [29–31] based on the
transfer-matrix method [32]. Therefore, in this work, a gen-
eralized nonlocal EMT in consideration of both nonlocal
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effective permittivity and permeability is derived for the sym-
metric metal–dielectric multilayer stack with respect to both
transverse-electric (TE) and transverse-magnetic (TM) polarized
light with arbitrary angle of incidence (AOI). The nonlocal
effective permittivity and permeability tensors will be obtained
through the transfer-matrix method in order to fully describe the
variation of the electromagnetic field across the metal–dielectric
multilayers with respect to both frequency and wave vector.
Compared with the local EMT parameters, the nonlocal effec-
tive permittivity and permeability tensors are analyzed in detail
as functions of the wavelength, the angle of incidence, as well
as the multilayer period. It is shown that the generalized non-
local EMT will converge into the local EMT as the multilayer
period approaches zero. In general, in contrast to the local EMT,
the generalized nonlocal EMT can fully characterize the optical
properties of the symmetric metal–dielectric multilayer stacks
with either subwavelength or wavelength-scale period of the
unit cell, and accurately predict the band structures, the
iso-frequency contours (IFCs), the transmission and reflection
spectra, as well as the optical field distributions.

2. Development of generalized nonlocal effective
medium theory

Figure 1(a) illustrates the symmetric and periodic metal–di-
electric multilayer stack composed of five-pair (with N = 5)

symmetric unit cells. Each unit cell contains a silver (Ag)
layer with the thickness of am sandwiched between two

sapphire (Al O2 3) layers with the thickness of a 2d , under the
illumination of the incident light propagating in the x-z plane
with an arbitrary AOI q0 in free space. The thickness of one
unit cell is = +a a am d, while the total thickness of the
multilayer stack is =a Natot . The electric permittivities of the
Ag layer and the Al O2 3 layer are denoted as em and ed,
respectively. The magnetic permeabilities of the Ag layer and
the Al O2 3 layer are denoted as mm and md, which are equal to
unity. In general, the symmetric Ag-Al O2 3 multilayer stack
can be regarded as a bulk of homogenous and anisotropic
effective medium characterized by a set of effective para-
meters, that is, a diagonal permittivity tensor and a diagonal
permeability tensor. According to the local EMT, the local
effective permittivity tensor reads ¯ ( )e e e e= diag , ,x y z

loc loc loc loc

with ( ) ( )e e e e= = + +a a a ax y m m d d m d
loc loc and e =z

loc

( ) ( )e e e e+ +a a a am d m d m d d m , which only depend on fre-
quency. Meanwhile, the local effective permeability tensor is
always equal to unity. In fact, previous studies have shown
that metal–dielectric multilayer stacks possess strong spatial
dispersion caused by optical nonlocality, which cannot be
characterized by the local EMT. Furthermore, the previously
proposed nonlocal EMT models only consider the nonlocal
effective permittivity tensor as a function of both frequency
and wave vector, but the nonlocal effective permeability
tensor is still treated as unity so that the optical properties of
the metal–dielectric multilayer stacks cannot completely
predicted yet.

In order to take into account the optical nonlocality
accurately, a generalized nonlocal EMT is derived through the
transfer-matrix method, and both the nonlocal effective
permittivity and permeability tensors are introduced as func-
tions of frequency and wave vector. In accordance with the
boundary conditions, the tangential components of the
electromagnetic field should be continuous across all inter-
faces of the Ag-Al O2 3 multilayer stack. Then the transfer
matrix for the multilayer stack composed of five-pair unit
cells is described as

( · · ) ( )= =M M M M M , 1d m dstack cell
5

2 2
5

in which

for the Ag layer, and

Figure 1. Schematic of the symmetric and periodic Ag-Al O2 3
multilayer stack with respect to the AOI q0 in free space.
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for the Al O2 3 half layer. The parameter hi reads h =i
e m qcosi i i for TE polarized light and h =i

m e qcosi i i for TM polarized light. The angle of refraction
qi is determined by the AOI q0 as q= =k k sinx 0 0

e m qk sini i i0 with i=m and d for the Ag layer and Al O2 3

layer, respectively. Considering the symmetric and periodic
properties of the Ag-Al O2 3 multilayer stack, the connections
between the transfer matrix for the stack Mstack and the transfer
matrix for the unit cell Mcell can be studied. According to
equations (1)–(3), Mcell can be expressed as

( ) ( )
( ) ( ) ( )

h
h

=
-

-

⎡
⎣⎢

⎤
⎦⎥M

k a k a

k a k a

cos isin

isin cos
, 4

z z e

z e z
cell

in terms of the dispersion relation of the unit cell
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h

h
h
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and the parameter

with j e m q= k a cosd d d d d0 and j e m q= k a cosm m m m m0 .
On the other hand, Mstack with N unit cell is determined as
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based on the Chebyshev polynomials of the second kind. By
comparing equations (4) and (7), it is indicated that the
electromagnetic field distribution in the Ag-Al O2 3 multilayer
stack can be fully described by that in the symmetric unit cell.
This fact implies that the nonlocal effective parameters for the
stack are independent of the number of the unit cell N.
Therefore, only one symmetric unit cell will be considered in
the determination of the nonlocal effective permittivity and
permeability tensors.

The symmetric unit cell is considered as a homogenous
and anisotropic effective medium including the optical non-
locality with the nonlocal effective permittivity and perme-
ability tensors of ¯ ( )e e e e= diag , ,e x y z and m̄=e

( )m m mdiag , ,x y z . The transfer matrix for the unit cell regarded
as a nonlocal effective medium is represented as
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( ) ( ) ( )
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Figure 2. (a) The real part and (b) the imaginary part of e e eD = -y y y
loc, as well as (c) the real part and (d) the imaginary part of

m m mD = -x x x
loc, with respect to the variations of wavelength and AOI for TE polarized light.
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for the TE polarized light, and

( )h
e

=
k

k
10z

x
eff

0

for the TM polarized light. Since the nonlocal effective
medium should represent the unit cell, the relation of h hº eeff
should be satisfied for both TE and TM polarized
light, according to equations (4) and (8). Meanwhile, the

Figure 3. (a) The real part and (b) the imaginary part of e e eD = -x x x
loc, as well as (c) the real part and (d) the imaginary part of

m m mD = -y y y
loc, with respect to the variations of wavelength and AOI for TM polarized light.

Figure 4. (a) The real part and (b) the imaginary part of e e eD = -y y y
loc, as well as (c) the real part and (d) the imaginary part of

m m mD = -x x x
loc, with respect to the variations of the period of the unit cell and wavelength for TEM mode at zero AOI.
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propagation of the electromagnetic wave in the nonlocal
effective medium can be described by the dispersion relation

( )
e m e m

+ =
k k

k 11x

y z

z

y x

2 2

0
2

for the TE polarized light, and
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k k

k 12x
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z

x y

2 2

0
2

for the TM polarized light. Therefore, according to
equations (5), (6), and (9)–(12), the nonlocal effective
permittivity and permeability components for the unit cell
can be expressed as
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associated with the TE polarized light, while
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associated with the TM polarized light. It is noted that three
nonlocal effective parameters ( )m e m, ,x y z or ( )e m e, ,x y z need
to be solved with only two equations of equations (9) and (11)
or equations (10) and (12), for TE or TM polarized light.
Therefore, the values of the nonlocal effective parameters
along the z direction, which is normal to the interfaces of the
multilayer stack, are approximated as the values of the
corresponding local effective parameters m mºz z

loc and

e eºz z
loc in equations (13) and (14). This hypothesis will

not reduce the accuracy of the generalized nonlocal EMT due
to the relatively weak optical nonlocality along the z direction.
Furthermore, based on equation (5), the wave vector kz in

Figure 5. (a) The band structure of the Ag-Al O2 3 multilayer stack with the period of unit cell =a 80 nm at zero AOI. The real part of the
normalized wave vector k kz p is denoted as the red curve, while the imaginary part is denoted as the black curve. The IFCs at point C are
plotted for (b) TE polarized light and (c) TM polarized light, calculated from the multilayer stack (red-solid curves for the real part and black-
solid curves for the imaginary part), the generalized nonlocal EMT (orange-dashed curves for the real part and blue-dashed curves for the
imaginary part), and the local EMT (red-dashed curves for the real part and black-dashed curves for the imaginary part).
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equations (13) and (14) can be expressed as

( )=
p j j j j - +h

h
h
h

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

k

, 15

z

n

a

2 arccos cos cos sin sind m
d

m

m

d
d m

1
2

with an arbitrary integer n, which is related to different
branches of the real part of wave vector ( )kRe z and the
restriction for the imaginary part of wave vector ( ) kIm 0z

due to the passive absorption loss. In general, selection of the
integer n must lead to a set of nonlocal effective parameters
that can converge to the local effective parameters when the
period of multilayer stack becomes much less than the
wavelength. Moreover, the nonlocal effective parameters
must vary continuously with respect to the wavelength or
frequency. Additionally, besides the value of the integer n, the
plus/minus (±) sign in equation (15) needs to be properly
selected to guarantee the restriction of ( ) kIm 0z according
to the passive medium condition.

3. Analysis of nonlocal effective permittivity and
permeability

The generalized nonlocal EMT will be utilized to study a
metal–dielectric multilayer stack in the subwavelength range
with the Ag layer thickness of =a 10 nmm and the Al O2 3

layer thickness of =a 70 nmd in the wavelength range from
400 to 800 nm. The permittivities of the Ag layer and the
Al O2 3 layer, em and ed, are obtained from the experimentally
measured data [33, 34]. For convenience, the Ag plasma
frequency ·w = ´ -1.37 10 rad sp

16 1 and the corresponding
wave vector w=k cp p are applied as the normalization factor
in the analysis. According to equation (13), figures 2(a) and
(b) display the difference between the nonlocal effective
permittivity component ey and the local effective permittivity
component ey

loc, defined as e e eD = -y y y
loc, with respect to

the variations of wavelength and AOI for TE polarized light.
While the difference between the nonlocal effective perme-
ability component mx and the local effective permeability
component mx

loc, defined as m m mD = -x x x
loc, are shown in

figures 2(c) and (d). Similarly, the differences of
e e eD = -x x x

loc and m m mD = -y y y
loc for TM polarized light

are plotted in figure 3 based on equation (14). The results
clearly show that the nonlocal effective permittivity compo-
nents ex and ey and the nonlocal effective permeability com-
ponents mx and my are all dependent on both the frequency and
the wave vector ( q=k k sinx 0 0) due to the optical nonlocality.
In contrast to the local EMT with e e=x y

loc loc and m m=x y
loc loc,

the nonlocal effective parameters e e¹x y and m m¹x y when
the AOI is not equal to zero. For zero AOI, the TE and TM
modes degenerates into the transverse electromagnetic (TEM)
mode and thus equation (13) is identical to equation (14).

Figure 6. (a) The transmission spectra for the =a 80 nm Ag-Al O2 3 multilayer stack (red-solid curve), the generalized nonlocal EMT
(orange-dashed curve), and the local EMT (red-dashed curve), as well as the reflection spectra for the multilayer stack (black-solid curve), the
generalized nonlocal EMT (blue-dashed curve), and the local EMT (black-dashed curve) for the TEM mode at zero AOI. The distributions of
(b) electric field Ey, (c) magnetic field Hx, and (d) energy flow Sz at point C for the multilayer stack (red-solid curves) and the generalized
nonlocal EMT (blue-dashed curves) are displayed.
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Moreover, it is noted that the imaginary parts of the nonlocal
effective permeability components mx and my have negative
values. However, this fact does not contradict the passive
medium condition, since the imaginary part of the wave
vector kz is always kept as positive value. In addition, it is
shown that the nonlocal effective permeability components mx
and my are sensitive to the configuration of the symmetric unit
cell in the metal–dielectric multilayer stack. For the current
configuration of the unit cell containing Al O2 3-Ag-Al O2 3

structure with the layer thickness of ad
1

2
-am- ad

1

2
, the nonlocal

effective permeability components mx and my have values
larger than unity, resulting in a paramagnetic response. On the
other hand, when the unit cell is switched into Ag-Al O2 3-Ag
structure with the layer thickness of am

1

2
-ad- am

1

2
, the nonlocal

effective permeability components mx and my will have values
less than unity, giving a diamagnetic response. Unlike the
local EMT and the previous nonlocal EMT, the generalized
nonlocal EMT can predict different paramagnetic and dia-
magnetic responses depending on the unit cell configuration
in the metal–dielectric multilayer stack. Since the optical
nonlocality is induced by the variation of the electromagnetic
field across the scale of the unit cell in the multilayer stack,
the nonlocal effective parameters will depend on the period of
the unit cell. Figure 4 shows the variations of eD y and mD x
with respect to the wavelength and the period of the unit cell
for the TEM mode based on equation (13). It is shown that the

values of eD y and mD x gradually reduce to zero over the
whole wavelength range from 400 to 800 nm as the period of
the unit cell reduces from 100 to 10 nm. This means that the
optical nonlocal effects are diminished and the nonlocal EMT
approaches the local EMT when the size of the unit cell goes
to the deep-subwavelength range.

Figure 5(a) plots the band structure of the multilayer
stack with the period of the unit cell =a 80 nm, according to
the diagonalization of the transfer matrix in equation (1) at
zero AOI. Four special points are marked in the band struc-
ture as point C where ( ) ( )=k k k kRe Imz p z p , and points A1,
A2 and A3 where the Bragg condition is satisfied. At the
frequency of point C (417.211 THz or 718.564 nm), the IFCs
calculated from the multilayer stack (equation (5)), the gen-
eralized nonlocal EMT, and the local EMT are displayed for
the TE mode in figure 5(b) and the TM mode in figure 5(c). It
is clearly shown that for both TE and TM modes, the IFCs
based on the multilayer stack and the generalized nonlocal
EMT exactly overlap with each other in both the real part and
the imaginary part, implying that the propagation of electro-
magnetic wave in the multilayer stack can be well described
by the generalized nonlocal EMT. In contrast, the IFCs cal-
culated from the local EMT possess a large deviation without
the consideration of optical nonlocality. Correspondingly,
figure 6 presents the transmission and reflection spectra for
the TEM mode with respect to the multilayer stack, the

Figure 7. (a) The transmission spectra for the =a 80 nm Ag-Al O2 3 multilayer stack (red-solid curve), the generalized nonlocal EMT
(orange-dashed curve), and the local EMT (red-dashed curve), as well as the reflection spectra for the multilayer stack (black-solid curve), the
generalized nonlocal EMT (blue-dashed curve), and the local EMT (black-dashed curve) for the TE mode at 45◦ AOI. The distributions of (b)
electric field Ey, (c) magnetic field Hx, and (d) energy flow Sz at point C for the multilayer stack (red-solid curves) and the generalized
nonlocal EMT (blue-dashed curves) are displayed.
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generalized nonlocal EMT, and the local EMT, together with
the distributions of electromagnetic field and energy flow for
the multilayer stack and the nonlocal effective medium. The
transmission and reflection spectra in figure 6(a) clearly
indicate that the generalized nonlocal EMT can predict the
exactly same spectra as the multilayer stack, in contrast to the
local EMT. The generalized nonlocal EMT also accurately
identifies the resonance features at the Bragg condition points
(A1, A2 and A3) in the spectra. At the frequency of point C,
the distributions of electric field Ey (figure 6(b)) and magnetic
field Hx (figure 6(c)) are illustrated for both the multilayer
stack and the generalized nonlocal EMT. The electromagnetic
field oscillates periodically and decays across each unit cell in
the actual multilayer stack, while the electromagnetic field
calculated from the generalized nonlocal EMT just smoothly
decays through the effective medium without seeing the
multilayer interfaces, following the same trend as the multi-
layer stack. The distribution of energy flow (Poynting vector
Sz) along the propagation direction is also plotted in
figure 6(d). The energy flow in the multilayer stack has a
ladder-like distribution with constant values in Al O2 3 layers
but exponentially decayed values in Ag layers. Instead, the
energy flow just exponentially decays along the effective
medium based on the generalized nonlocal EMT, with the
same trend as the multilayer stack. Moreover, the distribu-
tions of electromagnetic field in free space are exactly the
same for the multilayer stack and the generalized nonlocal

EMT, which indicates the agreement in the calculated trans-
mission and reflection spectra based on both approaches.

Additionally, the generalized nonlocal EMT can also
represent the electromagnetic properties of the multilayer
stack with respect to the oblique incident light. For instance,
figures 7 and 8 display the transmission and reflection spectra
related to the multilayer stack, the generalized nonlocal EMT,
and the local EMT, together with the distributions of
electromagnetic field and energy flow for the multilayer stack
and the nonlocal effective medium, with respect to the TE
polarized and TM polarized incident light at the AOI of
q = 450 , respectively. Figure 7(a) and 8(a) shows that the
generalized nonlocal EMT can still predict the exactly same
transmission and reflection spectra as the multilayer stack for
both TE mode and TM mode with the oblique incident light,
as well as the resonance features at the Bragg condition points
(A1 and A2) in contrast to the local EMT. Meanwhile,
according to the distributions of electric field Ey (figure 7(b)
for TE mode) and Ex (figure 8(b) for TM mode), and magnetic
field Hx (figure 7(c) for TE mode) and Hy (figure 8(c) for TM
mode) at the frequency of point C, it is shown that the
electromagnetic field oscillating and decaying across the
multilayer stack is well represented by the generalized non-
local EMT with smooth decay through the effective medium.
Correspondingly, the distributions of energy flow (Poynting
vector Sz) with ladder-like profiles in the multilayer stack are
also matched well with the results from the generalized

Figure 8. (a) The transmission spectra for the =a 80 nm Ag-Al O2 3 multilayer stack (red-solid curve), the generalized nonlocal EMT
(orange-dashed curve), and the local EMT (red-dashed curve), as well as the reflection spectra for the multilayer stack (black-solid curve), the
generalized nonlocal EMT (blue-dashed curve), and the local EMT (black-dashed curve) for the TM mode at 45◦ AOI. The distributions of
(b) electric field Ex, (c) magnetic field Hy, and (d) energy flow Sz at point C for the multilayer stack (red-solid curves) and the generalized
nonlocal EMT (blue-dashed curves) are displayed.
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nonlocal EMT across the effective medium, as shown in
figures 7(d) and 8(d) for the TE mode and TM mode,
respectively. Additionally, the distributions of electro-
magnetic field in free space also agree well between the
multilayer stack and the generalized nonlocal EMT for both
TE mode and TM mode with the oblique incident light.

Besides the multilayer stack with subwavelength period of
the unit cell, the generalized nonlocal EMT can also be utilized
to study the case with wavelength-scale period of the unit cell.
Figure 9 provides the band structure of the multilayer stack
with the period of the unit cell =a 150 nm at zero AOI,
together with the nonlocal effective parameters over the
wavelength range from 300 to 800 nm. Due to the large size of
the period, a forbidden band emerges in the band structure
approximately from 400 to 520 nm as shown in figure 9(a),
leading to strong resonances in the nonlocal effective permit-
tivity ey (figure 9(b)) and the nonlocal effective permeability mx
(figure 9(c)) at the boundaries of the forbidden band due to the
band transition. Such band transition induced nonlocal effec-
tive parameter resonances can be explained via the branch
variation of ( )kRe z according to equation (15). In general,

( )kRe z is determined by the n=0 branch with the plus sign in
equation (15) in the lower conduction band, but it is deter-
mined by the n=1 branch with the minus sign in the for-
bidden band and upper conduction band. The restriction of

( ) kIm 0z should always be guaranteed in all branches to
satisfy the passive medium condition. Moreover, the points that

satisfy the Bragg condition are all marked in the band structure,
with P1 to P4 in the lower conduction band and P5 to P7 in the
upper conduction band. The corresponding transmission and
reflection spectra, as well as the distributions of electric field
are further presented in figure 10. As shown in figure 10(a), the
generalized nonlocal EMT can precisely predict the transmis-
sion and reflection spectra for the multilayer stack over the
whole wavelength range, while the spectra from the local EMT
have great deviations since the period of the unit cell is far
away from the subwavelength range. Meanwhile, due to the
wavelength-scale period of the unit cell, the resonance peaks in
the transmission and reflection spectra at the Bragg condition
points (P1-P6) are clearly shown. The distributions of electric
field Ey at points P1, P3 and P6 are also displayed in
figures 10(b)–(d) for both multilayer stack and the generalized
nonlocal EMT. Apparently, the electric field in the actual
multilayer stack oscillates periodically through each unit cell
and generates resonant modes with different orders. While the
electric field calculated from the generalized nonlocal EMT
exhibits resonant standing wave pattern that matches the
electric field of the multilayer stack. These results imply that
the generalized nonlocal EMT can well describe the electro-
magnetic properties for the multilayer stack even in the
wavelength-scale range. Meanwhile, the distributions of elec-
tric field in free space are exact the same for the multilayer
stack and the generalized nonlocal EMT.

Figure 9. (a) The band structure of the Ag-Al O2 3 multilayer stack with the period of unit cell =a 150 nm at zero AOI. (b) The nonlocal
effective permittivity ey and (c) the nonlocal effective permeability mx with the real part in red-solid curves and the imaginary part in black-
solid curves.
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4. Conclusions

A generalized nonlocal EMT in consideration of nonlocal
effective permittivity and permeability has been derived
through the transfer-matrix method for symmetric and peri-
odic metal–dielectric multilayer stacks, with respect to both
TE and TM polarized light with arbitrary angle of incidence.
The nonlocal effective permittivity and permeability tensors
depending on both frequency and wave vector have been
analyzed in detail as functions of the wavelength, the angle of
incidence, and the period of the unit cell. The generalized
nonlocal EMT will converge into the local EMT as the period
of the unit cell approaches zero. In contrast to the local EMT,
the generalized nonlocal EMT can accurately characterize the
band structures, IFCs, transmission and reflection spectra, and
optical field distributions for the symmetric metal–dielectric
multilayer stacks with either subwavelength or wavelength-
scale period of the unit cell.
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